Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Biomolecules ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397481

RESUMO

3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGCR) is one of the rate-limiting enzymes in the mevalonate pathway required for cholesterol biosynthesis. It is an integral membrane protein of the endoplasmic reticulum (ER) but has occasionally been described in peroxisomes. By co-immunofluorescence microscopy using different HMGCR antibodies, we present evidence for a dual localization of HMGCR in the ER and peroxisomes in differentiated human monocytic THP-1 cells, primary human monocyte-derived macrophages and human primary skin fibroblasts under conditions of low cholesterol and statin treatment. Using density gradient centrifugation and Western blot analysis, we observed a truncated HMGCR variant of 76 kDa in the peroxisomal fractions, while a full-length HMGCR of 96 kDa was contained in fractions of the ER. In contrast to primary human control fibroblasts, peroxisomal HMGCR was not found in fibroblasts from patients suffering from type-1 rhizomelic chondrodysplasia punctata, who lack functional PEX7 and, thus, cannot import peroxisomal matrix proteins harboring a type-2 peroxisomal targeting signal (PTS2). Moreover, in the N-terminal region of the soluble 76 kDa C-terminal catalytic domain, we identified a PTS2-like motif, which was functional in a reporter context. We propose that under sterol-depleted conditions, part of the soluble HMGCR domain, which is released from the ER by proteolytic processing for further turnover, remains sufficiently long in the cytosol for peroxisomal import via a PTS2/PEX7-dependent mechanism. Altogether, our findings describe a dual localization of HMGCR under combined lipid depletion and statin treatment, adding another puzzle piece to the complex regulation of HMGCR.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Acil Coenzima A , Colesterol/metabolismo , Proteínas de Membrana
2.
Biomolecules ; 13(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136568

RESUMO

Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by ß-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in ß-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal ß-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal ß-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Neuroinflamatórias , Ácidos Graxos/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Ácidos Graxos não Esterificados , Macrófagos/metabolismo , Imunidade
3.
Biomolecules ; 13(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37759733

RESUMO

X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.


Assuntos
Adrenoleucodistrofia , Humanos , Camundongos , Animais , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Colesterol
4.
EBioMedicine ; 96: 104781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683329

RESUMO

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS: We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS: Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION: Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING: Austrian Science Fund, European Leukodystrophy Association.

5.
Acta Neuropathol Commun ; 11(1): 98, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37331971

RESUMO

X-linked adrenoleukodystrophy (X-ALD), the most frequent, inherited peroxisomal disease, is caused by mutations in the ABCD1 gene encoding a peroxisomal lipid transporter importing very long-chain fatty acids (VLCFAs) from the cytosol into peroxisomes for degradation via ß-oxidation. ABCD1 deficiency results in accumulation of VLCFAs in tissues and body fluids of X-ALD patients with a wide range of phenotypic manifestations. The most severe variant, cerebral X-ALD (CALD) is characterized by progressive inflammation, loss of the myelin-producing oligodendrocytes and demyelination of the cerebral white matter. Whether the oligodendrocyte loss and demyelination in CALD are caused by a primary cell autonomous defect or injury to oligodendrocytes or by a secondary effect of the inflammatory reaction remains unresolved. To address the role of X-ALD oligodendrocytes in demyelinating pathophysiology, we combined the Abcd1 deficient X-ALD mouse model, in which VLCFAs accumulate without spontaneous demyelination, with the cuprizone model of toxic demyelination. In mice, the copper chelator cuprizone induces reproducible demyelination in the corpus callosum, followed by remyelination upon cuprizone removal. By immunohistochemical analyses of oligodendrocytes, myelin, axonal damage and microglia activation during de-and remyelination, we found that the mature oligodendrocytes of Abcd1 KO mice are more susceptible to cuprizone-induced cell death compared to WT mice in the early demyelinating phase. Furthermore, this effect was mirrored by a greater extent of acute axonal damage during demyelination in the KO mice. Abcd1 deficiency did not affect the function of microglia in either phase of the treatment. Also, the proliferation and differentiation of oligodendrocyte precursor cells and remyelination progressed at similar rates in both genotypes. Taken together, our findings point to an effect of Abcd1 deficiency on mature oligodendrocytes and the oligodendrocyte-axon unit, leading to increased vulnerability in the context of a demyelinating insult.


Assuntos
Adrenoleucodistrofia , Animais , Camundongos , Adrenoleucodistrofia/induzido quimicamente , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cuprizona/toxicidade , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo
6.
Methods Mol Biol ; 2643: 413-434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952203

RESUMO

The import of many peroxisomal matrix proteins is initiated by the interaction of type-1 peroxisomal targeting signals (PTS1) residing at the extreme C-terminus of cargo proteins and their receptor protein PEX5. This interaction has been amply investigated by biophysical methods using isolated proteins and peptides or heterologous systems such as two-hybrid assays. However, a recently developed novel application of Fluorescence resonance energy transfer (FRET) allows a quantifying measurement of this interaction in living cells. This method combines the systematic measurement of FRET-efficiency in a high number of cells with a well-suited normalization protocol and a fitting algorithm, which together allow the estimation of numerical values for the apparent interaction strength that correlates with other measures of binding strength but can be obtained under rather physiological conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Sinais de Orientação para Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proteínas de Transporte/metabolismo , Peroxissomos/metabolismo , Peptídeos/metabolismo , Transporte Proteico/fisiologia
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768204

RESUMO

Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.


Assuntos
Éter , Plasmalogênios , Animais , Humanos , Camundongos , Éteres , Etil-Éteres , Coração , Mamíferos/metabolismo
9.
Brain Res Bull ; 193: 158-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584717

RESUMO

On the basis of findings that cultured rat hepatocytes secrete lipoprotein with a high plasmalogen content and the occurrence of this lipid in human serum, it has been suggested that hepatocytes play a role in the supply of plasmalogens to tissues. We tested this hypothesis in a mouse with a hepatocyte-specific defect in peroxisomes, an organelle essentially required for plasmalogen biosynthesis. We analyzed plasmalogens in lipid extracts of forebrain, liver and five further tissues and in plasma by reaction with dansylhydrazine in hydrochloric acid, which cleaves the vinyl ether of plasmalogens and forms a fluorescent dansylhydrazone, which we quantified by reversed phase high performance liquid chromatography. Reaction with dansylhydrazine in acetic acid was used to quantify free aldehydes as a control. Our results show normal levels of plasmalogens in plasma and in all tissues examined, including forebrain and the liver, irrespective of the inactivation of hepatic peroxisomes. None of the selected ether lipids analyzed by mass spectrometry in plasma and liver was decreased in the mice deficient in liver peroxisomes. In contrast, we found three plasmenylcholine species which were even significantly increased in the livers of these animals. Quantification of mRNA expression of plasmalogen biosynthetic enzymes revealed particularly low expression of fatty acyl-CoA reductase, the key regulatory enzyme of plasmalogen biosynthesis, in liver, with and without hepatic peroxisome deficiency. Our results do not support the suggested role of hepatocytes in supplying plasmalogens to tissues.


Assuntos
Hepatócitos , Plasmalogênios , Animais , Camundongos , Compostos de Dansil , Hepatócitos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Plasmalogênios/química , Plasmalogênios/metabolismo
10.
Front Mol Neurosci ; 16: 1299314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164407

RESUMO

Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal ß-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal ß-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.

11.
J Neuroinflammation ; 19(1): 305, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528616

RESUMO

Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo
12.
Front Cell Dev Biol ; 10: 1026388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407094

RESUMO

The import of the majority of soluble peroxisomal proteins is initiated by the interaction between type-1 peroxisomal targeting signals (PTS1) and their receptor PEX5. PTS1 motifs reside at the extreme C-terminus of proteins and consist of a characteristic tripeptide and a modulatory upstream region. Various PTS1-PEX5 interactions have been studied by biophysical methods using isolated proteins or in heterologous systems such as two-hybrid assays, but a recently established approach based on Försters resonance energy transfer (FRET) allows a quantifying investigation in living cells. FRET is the radiation-free energy transfer between two fluorophores in close proximity and can be used to estimate the fraction of acceptor molecules bound to a donor molecule. For PTS1-PEX5 this method relies on the measurement of FRET-efficiency between the PTS1-binding TPR-domain of PEX5 tagged with mCherry and EGFP fused to a PTS1 peptide. However, this method is less suitable for binding partners with low affinity and protein complexes involving large proteins such as the interaction between full-length PTS1-carrying cargo proteins and PEX5. To overcome this limitation, we introduce a life-cell competition assay based on the same FRET approach but including a fusion protein of Cerulean with the protein of interest as a competitor. After implementing the mathematical description of competitive binding experiments into a fitting algorithm, we demonstrate the functionality of this approach using known interaction partners, its ability to circumvent previous limitations of FRET-measurements and its ability to study the interaction between PEX5 and its full-length cargo proteins. We find that some proteins (SCP2 and AGXT) bind PEX5 with higher affinity than their PTS1-peptides alone, but other proteins (ACOX3, DAO, PerCR-SRL) bind with lower but reasonable affinity, whereas GSTK1 binds with very low affinity. This binding strength was not increased upon elongating the PEX5 TPR-domain at its N-terminus, PEX5(N-TPR), although it interacts specifically with the N-terminal domain of PEX14. Finally, we demonstrate that the latter reduces the interaction strength between PEX5(N-TPR) and PTS1 by a dose-dependent but apparently non-competitive mechanism. Altogether, this demonstrates the power of this novel FRET-based competition approach for studying cargo recognition by PEX5 and protein complexes including large proteins in general.

13.
BMC Med ; 20(1): 367, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36274133

RESUMO

BACKGROUND: Structured and harmonized implementation of molecular tumor boards (MTB) for the clinical interpretation of molecular data presents a current challenge for precision oncology. Heterogeneity in the interpretation of molecular data was shown for patients even with a limited number of molecular alterations. Integration of high-dimensional molecular data, including RNA- (RNA-Seq) and whole-exome sequencing (WES), is expected to further complicate clinical application. To analyze challenges for MTB harmonization based on complex molecular datasets, we retrospectively compared clinical interpretation of WES and RNA-Seq data by two independent molecular tumor boards. METHODS: High-dimensional molecular cancer profiling including WES and RNA-Seq was performed for patients with advanced solid tumors, no available standard therapy, ECOG performance status of 0-1, and available fresh-frozen tissue within the DKTK-MASTER Program from 2016 to 2018. Identical molecular profiling data of 40 patients were independently discussed by two molecular tumor boards (MTB) after prior annotation by specialized physicians, following independent, but similar workflows. Identified biomarkers and resulting treatment options were compared between the MTBs and patients were followed up clinically. RESULTS: A median of 309 molecular aberrations from WES and RNA-Seq (n = 38) and 82 molecular aberrations from WES only (n = 3) were considered for clinical interpretation for 40 patients (one patient sequenced twice). A median of 3 and 2 targeted treatment options were identified per patient, respectively. Most treatment options were identified for receptor tyrosine kinase, PARP, and mTOR inhibitors, as well as immunotherapy. The mean overlap coefficient between both MTB was 66%. Highest agreement rates were observed with the interpretation of single nucleotide variants, clinical evidence levels 1 and 2, and monotherapy whereas the interpretation of gene expression changes, preclinical evidence levels 3 and 4, and combination therapy yielded lower agreement rates. Patients receiving treatment following concordant MTB recommendations had significantly longer overall survival than patients receiving treatment following discrepant recommendations or physician's choice. CONCLUSIONS: Reproducible clinical interpretation of high-dimensional molecular data is feasible and agreement rates are encouraging, when compared to previous reports. The interpretation of molecular aberrations beyond single nucleotide variants and preclinically validated biomarkers as well as combination therapies were identified as additional difficulties for ongoing harmonization efforts.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/métodos , Estudos de Viabilidade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , RNA , Proteínas Tirosina Quinases , Nucleotídeos/uso terapêutico
14.
Front Cell Dev Biol ; 10: 946393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120579

RESUMO

Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.

15.
Commun Biol ; 5(1): 944, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085307

RESUMO

Very long-chain fatty acids (VLCFA) are critical for human cytomegalovirus replication and accumulate upon infection. Here, we used Epstein-Barr virus (EBV) infection of human B cells to elucidate how herpesviruses target VLCFA metabolism. Gene expression profiling revealed that, despite a general induction of peroxisome-related genes, EBV early infection decreased expression of the peroxisomal VLCFA transporters ABCD1 and ABCD2, thus impairing VLCFA degradation. The mechanism underlying ABCD1 and ABCD2 repression involved RNA interference by the EBV-induced microRNAs miR-9-5p and miR-155, respectively, causing significantly increased VLCFA levels. Treatment with 25-hydroxycholesterol, an antiviral innate immune modulator produced by macrophages, restored ABCD1 expression and reduced VLCFA accumulation in EBV-infected B-lymphocytes, and, upon lytic reactivation, reduced virus production in control but not ABCD1-deficient cells. Finally, also other herpesviruses and coronaviruses target ABCD1 expression. Because viral infection might trigger neuroinflammation in X-linked adrenoleukodystrophy (X-ALD, inherited ABCD1 deficiency), we explored a possible link between EBV infection and cerebral X-ALD. However, neither immunohistochemistry of post-mortem brains nor analysis of EBV seropositivity in 35 X-ALD children supported involvement of EBV in the onset of neuroinflammation. Collectively, our findings indicate a previously unrecognized, pivotal role of ABCD1 in viral infection and host defence, prompting consideration of other viral triggers in cerebral X-ALD.


Assuntos
Adrenoleucodistrofia , Infecções por Vírus Epstein-Barr , Herpesviridae , Adrenoleucodistrofia/genética , Antivirais , Criança , Infecções por Vírus Epstein-Barr/genética , Ácidos Graxos , Herpesviridae/genética , Herpesvirus Humano 4/genética , Humanos
16.
Brain Res Bull ; 189: 69-79, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981629

RESUMO

Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.


Assuntos
Éter , Plasmalogênios , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina , Animais , Barreira Hematoencefálica , Células Endoteliais , Éter/farmacologia , Feminino , Éteres de Glicerila , Mamíferos , Camundongos , Proteínas de Neoplasias , Placenta , Gravidez
17.
PLoS One ; 17(8): e0272577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939484

RESUMO

OBJECTIVES: Unfractionated heparin (UFH) is the commonly used anticoagulant to prevent clotting of the ECMO circuit and thrombosis of the cannulated vessels. A side effect of UFH is heparin-induced thrombocytopenia (HIT). Little is known about HIT during ECMO and the impact of changing anticoagulation in ECMO patients with newly diagnosed HIT. The aim of the study was to determine the prevalence, complications, impact of switching anticoagulation to argatroban and outcomes of patients developing heparin-induced thrombocytopenia (HIT) during either veno-venous (VV) or veno-arterial (VA) ECMO. METHODS: Retrospective observational single centre study of prospectively collected data of consecutive patients receiving VV ECMO therapy for severe respiratory failure and VA ECMO for circulatory failure from January 2006 to December 2016 of the Medical intensive care unit (ICU) of the University Hospital of Regensburg. Treatment of HIT on ECMO was done with argatroban. RESULTS: 507 patients requiring ECMO were included. Further HIT-diagnostic was conducted if HIT-4T-score was ≥4. The HIT-confirmed group had positive HIT-enzyme-linked-immunosorbent-assay (ELISA) and positive heparin-induced-platelet-activation (HIPA) test, the HIT-suspicion group a positive HIT-ELISA and missing HIPA but remained on alternative anticoagulation until discharge and the HIT-excluded group a negative or positive HIT-ELISA, however negative HIPA. These were compared to group ECMO-control without any HIT suspicion. The prevalence of HIT-confirmed was 3.2%, of HIT-suspicion 2.0% and HIT-excluded 10.8%. Confirmed HIT was trendwise more frequent in VV than in VA (3.9 vs. 1.7% p = 0.173). Compared to the ECMO control group, patients with confirmed HIT were longer on ECMO (median 13 vs. 8 days, p = 0.002). Different types of complications were higher in the HIT-confirmed than in the ECMO-control group, but in-hospital mortality was not different (31% vs. 41%, p = 0.804). CONCLUSION: HIT is rare on ECMO, should be suspected, if platelets are decreasing, but seems not to increase mortality if treated promptly.


Assuntos
Oxigenação por Membrana Extracorpórea , Trombocitopenia , Anticoagulantes/efeitos adversos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Heparina/efeitos adversos , Humanos , Prevalência , Estudos Retrospectivos , Trombocitopenia/induzido quimicamente , Trombocitopenia/epidemiologia , Trombocitopenia/terapia
18.
Front Cell Dev Biol ; 10: 886316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898397

RESUMO

Rhizomelic chondrodysplasia punctata type 1 (RCDP1) is a peroxisome biogenesis disorder caused by defects in PEX7 leading to impairment in plasmalogen (Pls) biosynthesis and phytanic acid (PA) oxidation. Pls deficiency is the main pathogenic factor that determines the severity of RCDP. Severe (classic) RCDP patients have negligible Pls levels, congenital cataracts, skeletal dysplasia, growth and neurodevelopmental deficits, and cerebral hypomyelination and cerebellar atrophy on brain MRI. Individuals with milder or nonclassic RCDP have higher Pls levels, better growth and cognitive outcomes. To better understand the pathophysiology of RCDP disorders, we generated an allelic series of Pex7 mice either homozygous for the hypomorphic allele, compound heterozygous for the hypomorphic and null alleles or homozygous for the null allele. Pex7 transcript and protein were almost undetectable in the hypomorphic model, and negligible in the compound heterozygous and null mice. Pex7 deficient mice showed a graded reduction in Pls and increases in C26:0-LPC and PA in plasma and brain according to genotype. Neuropathological evaluation showed significant loss of cerebellar Purkinje cells over time and a decrease in brain myelin basic protein (MBP) content in Pex7 deficient models, with more severe effects correlating with Pex7 genotype. All Pex7 deficient mice exhibited a hyperactive behavior in the open field environment. Brain neurotransmitters analysis of Pex7 deficient mice showed a significant reduction in levels of dopamine, norepinephrine, serotonin and GABA. Also, a significant correlation was found between brain neurotransmitter levels, the hyperactivity phenotype, Pls level and the severity of Pex7 genotype. In conclusion, our study showed evidence of a genotype-phenotype correlation between the severity of Pex7 deficiency and several clinical and neurobiochemical phenotypes in RCDP1 mouse models. We propose that PA accumulation may underlie the cerebellar atrophy seen in older RCDP1 patients, as even relatively low tissue levels were strongly associated with Purkinje cells loss over time in the murine models. Also, our data demonstrate the interrelation between Pls, brain neurotransmitter deficiencies and the neurobehavioral phenotype, which could be further used as a valuable clinical endpoint for therapeutic interventions. Finally, these models show that incremental increases in Pex7 levels result in dramatic improvements in phenotype.

19.
J Thorac Oncol ; 16(11): 1952-1958, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245914

RESUMO

INTRODUCTION: In contrast to other driver mutations, no targeted therapies have yet been approved in ERBB2-mutated NSCLC (HER2mu NSCLC). Nevertheless, several compounds have revealed promising early efficacy data, which need to be evaluated in the context of current standard approaches. Although data on the efficacy of immune checkpoint inhibitors (ICIs) in second or subsequent lines of treatment remain limited and conflicting, there are virtually no data on patient outcome under ICI/platinum-doublet combinations in the first-line setting. METHODS: We retrospectively evaluated outcomes of patients with HER2mu NSCLC treated with ICI alone or in combination with chemotherapy within the German National Network Genomic Medicine Lung Cancer consortium by means of overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS: ICI either in combination with chemotherapy or as monotherapy was applied as first-line treatment in 27 patients, whereas 34 received single-agent ICI in second or subsequent lines. Patient characteristics were in line with previously published data. In treatment-naive patients receiving ICI in combination with chemotherapy, the ORR, median PFS, and OS rate at 1 year were 52%, 6 months, and 88%, respectively. In second or subsequent lines, ICI monotherapy was associated with an ORR of 16%, a median PFS of 4 months, and a median OS of 10 months. CONCLUSIONS: ICIs are effective as monotherapy and in combination with platinum-doublet chemotherapy. Therefore, ICI-based treatments may be found as the current standard of care and benchmark for targeted therapies in HER2mu NSCLC.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Receptor ErbB-2 , Estudos Retrospectivos
20.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078742

RESUMO

X-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARγ agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD. In addition, leriglitazone improved motor function; restored markers of oxidative stress, mitochondrial function, and inflammation in spinal cord tissues from AMN mouse models; and decreased the neurological disability in the EAE neuroinflammatory mouse model. X-ALD monocyte-derived patient macrophages treated with leriglitazone were less skewed toward an inflammatory phenotype, and the adhesion of human X-ALD monocytes to brain endothelial cells decreased after treatment, suggesting the potential of leriglitazone to prevent the progression to pathologically disrupted blood-brain barrier. Leriglitazone increased myelin debris clearance in vitro and increased myelination and oligodendrocyte survival in demyelination-remyelination in vivo models, thus promoting remyelination. Last, leriglitazone was clinically tested in a phase 1 study showing central nervous system target engagement (adiponectin increase) and changes on inflammatory biomarkers in plasma and cerebrospinal fluid. The results of our study support the use of leriglitazone in X-ALD and, more generally, in other neuroinflammatory and neurodegenerative conditions.


Assuntos
Adrenoleucodistrofia , PPAR gama/agonistas , Adrenoleucodistrofia/tratamento farmacológico , Encéfalo , Células Endoteliais , Humanos , Oligodendroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...